SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: EMTL (20EC0415)
Year \&Sem: III-B.Tech \& I-Sem

Course \& Branch: B.Tech. - ECE
Regulation: R20

UNIT -I
 ELECTROSTATIC FIELDS

1	a)	Define Coulomb's law and derive the force \mathbf{F} that exists between two unlike charges.	[L3][CO1]	[06M]
	b)	Two-point charges, $\mathrm{Q}_{\mathrm{A}}=+8 \mu \mathrm{C}$ and $\mathrm{Q}_{\mathrm{B}}=-5 \mu \mathrm{C}$, are separated by a distance $\mathrm{r}=$ 10 cm . What is the magnitude of the electric force between them?	[L3][CO1]	[06M]
2	a)	Define Electric field intensity and write the properties electric flux	[L1][CO1]	[06M]
	b)	A Point charge of 20 nC is located at the origin. Determine the magnitude and direction of the electric field intensity at point ($1,3,-4$).	[L3][CO2]	[06M]
3		Explain the following types of charge distributions. i) Line charge distribution. ii) Surface charge distribution. iii) Volume charge distribution.	[L2][CO2]	[12M]
4	a)	Deduce the electric field Intensity at a distance p due to an infinitely long straight line.	[L4] [CO3]	[08M]
	b)	A point charge $\mathrm{Q}=30 \mathrm{nC}$ is located at the origin in Cartesian co-ordinates. Find the electric flux density \mathbf{D} at $(1,3,-4)$.	[L3] [CO3]	[04M]
5	a)	Deduce the electric field Intensity due to Surface charge	[L4] [CO3]	[06M]
	b)	Deduce the electric field Intensity due to volume charge	[L4] [CO3]	[06M]
6	a)	Explain the following i) Electric Flux density ii) Gauss Law.	[L2][CO2]	[08M]
	b)	What are the advantages and applications of Gauss law?	[L1][CO2]	[04M]
7	a)	Apply Gauss Law to evaluate the electric flux density at a point P due to the point charge located at the origin.	[L3][CO2]	[06M]
	b)	A charge of $5 \times 10^{-8} \mathrm{C}$ is distributed uniformly on the surface of a sphere of radius 1 cm . It is a sphere of radius 6 cm . Determine electric flux density	[L3][CO2]	[06M]
8	a)	Determine the Electric flux density at a point P due to infinite line charge of uniform Charge density $\rho_{\mathrm{L}} \mathrm{C} / \mathrm{m}$ using Gauss law.	[L3][CO2]	[06M]
	b)	Determine the Electric flux density at a point P due to infinite sheet of Charge using Gauss law.	[L3][CO2]	[06M]
9		Determine the Electric flux density due to uniformly charged Sphere using Gauss law.	[L3][CO2]	[12M]
10	a)	Define Electric Potential. Find the electric potential for a point charge is located at origin and Write Maxwell's second equation for electrostatic field	[L3][CO2]	[08M]
	b)	Determine the Relationship between \mathbf{E} and V.	[L3][CO2]	[04M]

UNIT - II
 MAGNETOSTATIC FIELDS

1	a)	Explain Biot-Savart's Law.	[L2][CO1]	[06M]
	b)	A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large circuit. Find \mathbf{H} at (i) $\quad \mathrm{A}(2,3,0)$. (ii) $\mathrm{B}(3,12,-4)$.	[L3][CO2]	[06M]
2		Find the Magnetic field Intensity Due to a Straight current carrying filamentary conductor of finite length.	[L3][CO3]	[12M]
3	a)	Explain Ampere's Circuit Law.	[L2][CO1]	[06M]
	b)	Determine the Magnetic Field Density due to Infinite line Current by applying Ampere's Circuit law.	[L3][CO3]	[06M]
4		Explain any two applications of Ampere's Circuit law.	[L2][CO3]	[12M]
5	a)	Determine the Magnetic Field Intensity due to a infinite sheet current.	[L3][CO2]	[06M]
	b)	Define magnetic flux density and explain $3^{\text {rd }}$ maxwells equation	[L2][CO2]	[06M]
6	a)	An infinitely filamentary wire carries a current of 2 A in the +z direction. Calculate B at $(-3,4,7)$.	[L3][CO3]	[06M]
	b)	Define magnetic flux and explain its properties.	[L2] [CO2]	[06M]
7	a)	Explain about Non-Existence of Magnetic Mono pole.	[L2] [CO2]	[06M]
	b)	Determine Maxwell's Equations for static EM Fields.	[L3][CO2]	[06M]
8		List differential and integral form of Maxwell's equation for static EM filed.	[L1][CO2]	[12M]
9	a)	Discuss about Magnetic Vector and Scalar Potentials.	[L2][CO1]	[06M]
	b)	Given Magnetic Vector Potential $\mathbf{A}=-\rho / 4 \mathbf{a z z}^{\mathrm{wb}} / \mathrm{m}$, Calculate the total magnetic flux crossing the $\Phi=\pi / 2,1 \leq \rho \leq 2 \mathrm{~m} 1,0 \leq z \leq 5 \mathrm{~m}$.	[L3][CO3]	[06M]
10		A Current Distribution gives rise to the vector potential $\mathbf{A}=\mathrm{X}^{2} \mathrm{Y}_{\mathbf{x}}+\mathrm{Y}^{2} \mathrm{Xa}_{y}+\mathrm{XYZa}$ web $/ \mathrm{m}$. Calculate B.	[L3] [CO2]	[12M]

UNIT -III
 MAXWELL'S EQUATIONS (TIME VARYING FIELDS)

1		Define Faraday's law and Explain Faraday's laws in Electromagnetic induction.	[L2][CO1]	[12M]
2	a)	Determine the Transformer EMF for the time varying fields.	[L3][CO4]	[06M]
	b)	Explain the motional EMF and derive the expression for the maxwell equation.	[L3][CO4]	[06M]
3		Explain and determine the EMF for the Followings. i) Motional EMF. (ii)Transformer EMF.	[L3][CO2]	[12M]
4	a)	Derive the expression for Stationary Loop in Time Varying B field	[L3][CO2]	[06M]
	b)	Derive the expression for Moving Loop in Static B field	[L3][CO2]	[06M]
5	a)	Deduce the Expression for Moving loop in Time varying Fields	[L3][CO2]	[06M]
	b)	Define Displacement Current with expression	[L2][CO2]	[06M]
6	a)	Determine the Expressions for inconsistency of Ampere's law.	[L3][CO3]	[08M]
	b)	Why ampere's Law is In-consistent.	[L4][CO2]	[04M]
7	a)	Discuss Maxwell's equation in both differential and integral in final form	[L2][CO2]	[08M]
	b)	An antenna radiates in free space and $\mathbf{H}=50 \operatorname{Cos}(1000 \mathrm{t}-5 \mathrm{y}) \mathrm{ax} \mathrm{A} / \mathrm{m}$. Calculate ω and β.	[L3][CO3]	[04M]
8	a)	In free space, $\mathbf{E}=20 \cos (\omega t-50 x) \mathbf{a y ~ V / m . ~ C a l c u l a t e ~ J d , ~ H . ~}$	[L3][CO4]	[08M]
	b)	Write the Maxwell's equations into word statement.	[L1][CO4]	[04M]
9	a)	Prove that the Maxwell's equation is $\nabla \times \mathbf{E}=-\mathrm{d} \mathbf{B} / \mathrm{dt}$	[L5][CO4]	[08M]
	b)	In free space, $\mathrm{H}=10 \sin (\omega \mathrm{t}-100 \mathrm{x}) \mathbf{a y} \mathrm{A} / \mathrm{m}$. Calculate \mathbf{E}	[L3][CO4]	[04M]
10	a)	Prove that one of the Maxwell's equations is $\nabla \times \mathbf{H}=\mathbf{J} \mathbf{d}+\mathbf{J}$.	[L5][CO4]	[08M]
	b)	An antenna radiates in free space and $\mathbf{E}=80 \cos (500 t-8 z) \mathbf{a x} \mathrm{V} / \mathrm{m}$. Calculate \oplus and β.	[L3][CO2]	[04M]

UNIT -IV
 EM WAVE PROPAGATION

1		Derive the general wave equation.	[L3][CO5]	[12M]
2	a)	Evaluate the wave equation in lossy dielectric medium for sinusoidal time variations.	[L4][CO5]	[06M]
	b)	In a Nonmagnetic medium $\mathbf{E}=4 \sin \left(2 \pi X 10^{7} t-0.8 x\right) a_{z} v / m$, find ε_{r}, η.	[L3][CO5]	[06M]
3		A plane wave propagating through medium with $\varepsilon_{r}=8, \mu_{r}=2$ has the electric field intensity $\mathbf{E}=0.5 e^{-j z 3} \sin \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \hat{a}_{x} \mathrm{~V} / \mathrm{m}$. Determine wave velocity, wave impedance and magnetic field intensity.	[L3][CO5]	[12M]
4	a)	Evaluate the wave characteristics of plane wave in lossless dielectric medium.	[L4][CO5]	[06M]
	b)	In lossless medium $\eta=40 \pi, \mu_{r}=1, \mathbf{H}=2 \cos (\omega \mathrm{t}-\mathrm{z}) \widehat{\boldsymbol{a}}_{\boldsymbol{x}}+5 \sin (\omega \mathrm{t}-\mathrm{z})$ $\widehat{\boldsymbol{a}}_{\boldsymbol{y}}$. Find $\varepsilon_{r}, \omega, \mathbf{E}$ for the medium.	[L3][CO5]	[06M]
5	a)	Derive the characteristics of plane wave in free space.	[L3][CO5]	[06M]
	b)	Given that $\mathbf{E}=40 \cos \left(10^{8} t-3 x\right) a_{y} v / m$, Determine the direction of wave propagation, velocity of the wave, wave length.	[L3][CO5]	[06M]
6	a)	Derive the expression for intrinsic impendence and propagation constant in a good conductor.	[L3][CO5]	[06M]
	b)	In a medium, $\mathbf{E}=14 e^{-0.05 x} \sin \left(2 X 10^{8} \mathrm{t}-2 \mathrm{x}\right) \hat{a}_{z} \mathrm{~V} / \mathrm{m}$. Determine the followings: i) The propagation constant ii) The wavelength iii) The speed of the wave	[L3][CO5]	[06M]
7		Discuss about power and Poynting vector.	[L2][CO5]	[12M]
8		Evaluate the expressions for reflection coefficient and transmission coefficient by a normal incident wave for a dielectric medium.	[L4][CO5]	[12M]
9		Derive the expressions for reflection coefficient and transmission coefficient for reflection of plane wave at oblique in parallel polarization	[L3][CO5]	[12M]
10		Derive the expressions for reflection coefficient and transmission coefficient for reflection of plane wave at oblique in perpendicular polarization	[L3][CO5]	[12M]

UNIT -V
 TRANSMISSION LINES

1	a)	Define Transmission line and Discuss about Transmission line Parameters.	[L2][CO6]	[06M]
	b)	With neat sketch explain about Primary and Secondary constants of transmission line.	[L3][CO6]	[06M]
2	a)	A distortion less line has $\mathrm{Z}_{0}=60 \Omega$ Attenuation constant $=20 \mathrm{mNp} / \mathrm{m}$ and $\mathrm{u}=0.6 \mathrm{c}$ (c is velocity of light) Find the primary parameters of the transmission line ($\mathrm{R} \mathrm{L} \mathrm{C} \mathrm{G} \mathrm{and} \lambda$) at 100 MHz .	[L3][CO6]	[06M]
	b)	A telephone line has the following parameters: $\mathrm{R}=30 \Omega / \mathrm{km}, \mathrm{G}=0 \mathrm{~L}=$ $100 \mathrm{mH} / \mathrm{km}, \mathrm{C}=20 \mu \mathrm{~F} / \mathrm{m}$. At 1 kHz , Find the characteristic impedance, propagation constant and velocity of the signal.	[L3][CO6]	[06M]
3		Deduce the equation for voltage and current at any point in a transmission line.	[L4][CO6]	[12M]
4		Determine the equation for Input Impedance of the transmission line.	[L3][CO6]	[12M]
5	a)	A Certain transmission line 2 m long operating at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ has $\alpha=8 \mathrm{bd} / \mathrm{m}$, $\beta=1 \mathrm{rad} / \mathrm{m}$, and $\mathrm{Z}_{0}=60+\mathrm{j} 40 \Omega$. If the line is connected to a source of $10 \angle 0^{\circ} \mathrm{V}$, $\mathrm{Z}_{\mathrm{g}}=40 \Omega$ and terminated by a load of $20+\mathrm{j} 50 \Omega$, determine the input impedance.	[L3][CO6]	[06M]
	b)	Explain about SWR and Power	[L2][CO6]	[06M]
6	a)	A low loss transmission line of 100Ω characteristics impedance is connected to a load of 200Ω. Compute the voltage reflection coefficient and the standing wave ratio.	[L3][CO6]	[06M]
	b)	Explain about S-Circle, r-Circle and x-Circle in smith chart.	[L2][CO6]	[06M]
7		A 50Ω lossless transmission line is terminated on a load impedance of $\mathrm{Z}_{\mathrm{L}}=(25$ $+\mathrm{j} 50) \Omega$. Use the smith chart to find. i) Voltage reflection coefficient. ii) VSWR. iii) input impedance of the line, given that the line is 0.3λ long.	[L3][CO6]	[12M]
8		A lossless transmission line with $\mathrm{Z}_{0}=50 \Omega$ is 30 m long and operates at 3 MHz . The line is terminated with a load $\mathrm{Z}_{\mathrm{L}}=70+\mathrm{j} 50 \Omega$, If $\mathrm{u}=0.6 \mathrm{c}$ on the line. Compute reflection coefficient, standing wave ratio and Input impedance, load impedance, (i) without using smith chart (ii) Using smith chart	[L3][CO6]	[12M]
9		A 30 m long lossless transmission line with $\mathrm{Z}_{0}=50 \Omega$ operating at 2 MHz is terminated with a load $\mathrm{Z}_{\mathrm{L}}=60+\mathrm{j} 40 \Omega$. If $\mathrm{u}=0.6 \mathrm{C}$ on the line, find the reflection coefficient, the standing wave ratio S and the input impedance. (i) without using smith chart (ii) Using smith chart	[L3][CO6]	[12M]
10	a)	List the applications of transmission lines.	[L1][CO6]	[04M]
	b)	Discuss about transient on transmission line	[L2][CO6]	[04M]
	c)	Discuss about Microstrip transmission lines	[L2][CO6]	[04M]

Prepared by

1. J. Rajanikanth - Associate Professor
2. K.D.Mohana Sundaram - Associate Professor
