SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: EMTL (20EC0415)

Course & Branch: B.Tech. – ECE

Year &Sem: III-B.Tech & I-Sem

Regulation: R20

UNIT –I <u>ELECTROSTATIC FIELDS</u>

1	a)	Define Coulomb's law and derive the force \mathbf{F} that exists between two unlike	[L3][CO1]	[06M]
	b)	Charges. Two point charges $\Omega_{-} = 18 \text{ uC}$ and $\Omega_{-} = 5 \text{ uC}$ are concreted by a distance $r = 18$	[L 2][CO1]	[0 4] /[]
	D)	1 wo-point energies, $Q_A = +8 \ \mu$ C and $Q_B = -5 \ \mu$ C, are separated by a distance $r = 10 \ \text{cm}$. What is the magnitude of the electric force between them?		
•	\ \	10 cm. what is the magnitude of the electric force between them?	II 11/0011	
2	a)	Define Electric field intensity and write the properties electric flux		[06M]
	b)	A Point charge of 20nC is located at the origin. Determine the magnitude and	[L3][CO2]	[06M]
		direction of the electric field intensity at point (1,3,-4).		
3		Explain the following types of charge distributions.	[L2][CO2]	[12M]
		i) Line charge distribution. ii) Surface charge distribution.		
		iii) Volume charge distribution.		
4	a)	Deduce the electric field Intensity at a distance p due to an infinitely long straight	[L4] [CO3]	[08M]
		line.		
	b)	A point charge $Q = 30$ nC is located at the origin in Cartesian co-ordinates. Find	[L3] [CO3]	[04M]
		the electric flux density D at $(1,3,-4)$.		
5	a)	Deduce the electric field Intensity due to Surface charge	[L4] [CO3]	[06M]
	b)	Deduce the electric field Intensity due to volume charge	[L4] [CO3]	[06M]
6	a)	Explain the following	[L2][CO2]	[08M]
	,	i) Electric Flux density		
		ii) Gauss Law.		
	b)	What are the advantages and applications of Gauss law?	[L1][CO2]	[04M]
7	a)	Apply Gauss Law to evaluate the electric flux density at a point P due to the	[L3][CO2]	[06M]
	/	point charge located at the origin.	L - JL J	J
	b)	A charge of 5×10^{-8} C is distributed uniformly on the surface of a sphere of radius	[L3][CO2]	[06M]
	,	1cm. It is a sphere of radius 6 cm. Determine electric flux density	[][]	[]
8	a)	Determine the Electric flux density at a point P due to infinite line charge of	[L3][CO2]	[06M]
Ũ	,	uniform Charge density O. C/m using Cause law	[20][002]	[001.1]
	1.)	uniform Charge density p_L C/m using Gauss law.	FL 21[CO2]	
	D)	Determine the Electric flux density at a point P due to infinite sheet of Charge	[L3][CO2]	
0		using Gauss law.		F4 63 63
9		Determine the Electric flux density due to uniformly charged Sphere using	[L3][CO2]	[12M]
		Gauss law.		F0.07
10	a)	Define Electric Potential. Find the electric potential for a point charge is located	[L3][CO2]	[08M]
		at origin and Write Maxwell's second equation for electrostatic field		
	b)	Determine the Relationship between E and V.	[L3][CO2]	[04M]

UNIT –II <u>MAGNETOSTATIC FIELDS</u>

1	a)	Explain Biot-Savart's Law.	[L2][CO1]	[06M]
	b)	A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a	[L3][CO2]	[06M]
		Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large		
		circuit. Find H at (i) $A(2,3,0)$. (ii) $B(3,12,-4)$.		
2		Find the Magnetic field Intensity Due to a Straight current carrying filamentary	[L3][CO3]	[12M]
		conductor of finite length.		
3	a)	Explain Ampere's Circuit Law.	[L2][CO1]	[06M]
	b)	Determine the Magnetic Field Density due to Infinite line Current by applying	[L3][CO3]	[06M]
	-	Ampere's Circuit law.		
4		Explain any two applications of Ampere's Circuit law.	[L2][CO3]	[12M]
5	a)	Determine the Magnetic Field Intensity due to a infinite sheet current.	[L3][CO2]	[06M]
	b)	Define magnetic flux density and explain 3 rd maxwells equation	[L2][CO2]	[06M]
6	a)	An infinitely filamentary wire carries a current of 2A in the +z direction.	[L3][CO3]	[06M]
		Calculate B at (-3,4,7).		
	b)	Define magnetic flux and explain its properties.	[L2] [CO2]	[06M]
7	a)	Explain about Non-Existence of Magnetic Mono pole.	[L2] [CO2]	[06M]
	b)	Determine Maxwell's Equations for static EM Fields.	[L3][CO2]	[06M]
8		List differential and integral form of Maxwell's equation for static EM filed.	[L1][CO2]	[12M]
9	a)	Discuss about Magnetic Vector and Scalar Potentials.	[L2][CO1]	[06M]
	b)	Given Magnetic Vector Potential $\mathbf{A} = -\rho/4 \mathbf{a}_z \text{ wb/m}$, Calculate the total magnetic	[L3][CO3]	[06M]
		flux crossing the $\Phi = \pi/2, 1 \le \rho \le 2m1, 0 \le z \le 5m$.		
10		A Current Distribution gives rise to the vector potential $\mathbf{A} = X^2 Y \mathbf{a}_x + Y^2 X \mathbf{a}_y + X Y Z \mathbf{a}_z$	[L3] [CO2]	[12M]
		web/m. Calculate B .		

UNIT –III <u>MAXWELL'S EQUATIONS (TIME VARYING FIELDS)</u>

1		Define Faraday's law and Explain Faraday's laws in Electromagnetic induction.	[L2][CO1]	[12M]
2	a)	Determine the Transformer EMF for the time varying fields.	[L3][CO4]	[06M]
	b)	Explain the motional EMF and derive the expression for the maxwell equation.	[L3][CO4]	[06M]
3		Explain and determine the EMF for the Followings.	[L3][CO2]	[12M]
		i) Motional EMF. (ii)Transformer EMF.		
4	a)	Derive the expression for Stationary Loop in Time Varying B field	[L3][CO2]	[06M]
	b)	Derive the expression for Moving Loop in Static B field	[L3][CO2]	[06M]
5	a)	Deduce the Expression for Moving loop in Time varying Fields	[L3][CO2]	[06M]
	b)	Define Displacement Current with expression	[L2][CO2]	[06M]
6	a)	Determine the Expressions for inconsistency of Ampere's law.	[L3][CO3]	[08M]
	b)	Why ampere's Law is In-consistent.	[L4][CO2]	[04M]
7	a)	Discuss Maxwell's equation in both differential and integral in final form	[L2][CO2]	[08M]
	b)	An antenna radiates in free space and H = 50 Cos(1000t-5y) ax A/m. Calculate ω and β .	[L3][CO3]	[04M]
8	a)	In free space, $\mathbf{E} = 20 \cos(\omega t - 50x)\mathbf{ay} \text{ V/m}$. Calculate Jd, H.	[L3][CO4]	[08M]
	b)	Write the Maxwell's equations into word statement.	[L1][CO4]	[04M]
9	a)	Prove that the Maxwell's equation is $\nabla \times \mathbf{E} = -d\mathbf{B}/dt$	[L5][CO4]	[08M]
	b)	In free space, $H=10 \sin(\omega t-100x)\mathbf{a}_y$ A/m. Calculate E	[L3][CO4]	[04M]
10	a)	Prove that one of the Maxwell's equations is $\nabla \times \mathbf{H} = \mathbf{J}_d + \mathbf{J}$.	[L5][CO4]	[08M]
	b)	An antenna radiates in free space and $\mathbf{E} = 80 \cos(500t-8z)\mathbf{a} \times V/m$. Calculate o	[L3][CO2]	[04M]
		and β.		

UNIT –IV <u>EM WAVE PROPAGATION</u>

1		Derive the general wave equation.	[L3][CO5]	[12M]
2	a)	Evaluate the wave equation in lossy dielectric medium for sinusoidal time variations.	[L4][CO5]	[06M]
	b)	In a Nonmagnetic medium $\mathbf{E}=4\sin(2\pi X 10^7 t - 0.8x)a_z v/m$, find ε_r , η .	[L3][CO5]	[06M]
3		A plane wave propagating through medium with $\varepsilon_r = 8, \mu_r = 2$ has the electric field intensity $\mathbf{E} = 0.5 \ e^{-jz_3} \sin(10^8 t \ gz) \ \hat{\sigma}$. W/m. Determine wave	[L3][CO5]	[12M]
		velocity, wave impedance and magnetic field intensity.		
4	a)	Evaluate the wave characteristics of plane wave in lossless dielectric medium.	[L4][CO5]	[06M]
	b)	In lossless medium $\eta = 40\pi$, $\mu_r = 1$, H=2 cos ($\omega t - z$) \hat{a}_x +5sin ($\omega t - z$) \hat{a}_x -Find ε_r , ω , E for the medium.	[L3][CO5]	[06M]
5	a)	Derive the characteristics of plane wave in free space.	[L3][CO5]	[06M]
	b)	Given that $E=40\cos(10^8t-3x)a_yv/m$, Determine the direction of wave	[L3][CO5]	[06M]
		propagation, velocity of the wave, wave length.		
6	a)	Derive the expression for intrinsic impendence and propagation constant in a good conductor	[L3][CO5]	[06M]
	b)	In a medium, $\mathbf{E} = 14e^{-0.05x} \sin (2 \times 10^8 \text{ t} - 2x) \hat{a}_z$ V/m. Determine the	[L3][CO5]	[06M]
	-	followings:		
		i) The propagation constant		
		ii) The wavelength		
		iii) The speed of the wave		
7		Discuss about power and Poynting vector.	[L2][CO5]	[12M]
8		Evaluate the expressions for reflection coefficient and transmission coefficient	[L4][CO5]	[12M]
		by a normal incident wave for a dielectric medium.		
9		Derive the expressions for reflection coefficient and transmission coefficient	[L3][CO5]	[12M]
		for reflection of plane wave at oblique in parallel polarization		
10		Derive the expressions for reflection coefficient and transmission coefficient	[L3][CO5]	[12M]
		for reflection of plane wave at oblique in perpendicular polarization		

UNIT –V TRANSMISSION LINES

1	a)	Define Transmission line and Discuss about Transmission line Parameters.	[L2][CO6]	[06M]
	b)	With neat sketch explain about Primary and Secondary constants of	[L3][CO6]	[06M]
		transmission line.		
2	a)	A distortion less line has $Z_0=60 \Omega$ Attenuation constant = 20 mNp/m and	[L3][CO6]	[06M]
		u=0.6c (c is velocity of light) Find the primary parameters of the transmission		
		line (R L C G and λ) at 100MHz.		
	b)	A telephone line has the following parameters: $R=30\Omega/km$, $G=0$ L =	[L3][CO6]	[06M]
		100mH/km , C = $20 \mu \text{F/m}$. At 1kHz, Find the characteristic impedance,		
2		propagation constant and velocity of the signal.	II 41100(1	[10]
3		Deduce the equation for voltage and current at any point in a transmission line.	[L4][CO6]	$\begin{bmatrix} 12NI \end{bmatrix}$
4		Determine the equation for input impedance of the transmission line.	[L3][C06]	
5	a)	A Certain transmission line 2m long operating at $\omega = 10^{\circ}$ rad/s has $\alpha = 8$ bd/m,	[L3][C06]	
		$p-1$ rad/m, and $Z_0=00+14022$. If the line is connected to a source of 10 Z_0 , $Z_0=400$ and terminated by a load of $20+1500$, determine the input impedance.		
	b)	$Z_g = 4022$ and terminated by a load of 20+J5052, determine the input impedance.		[06M]
6	9)	A low loss transmission line of 100 O characteristics impedance is connected to	[L2][C06]	[06M]
U	<i>a)</i>	a load of 200 Q. Compute the voltage reflection coefficient and the standing		
		wave ratio		
	b)	Explain about S-Circle, r-Circle and x-Circle in smith chart.	[L2][CO6]	[06M]
7	,	A 50 Ω lossless transmission line is terminated on a load impedance of $Z_L = (25)$	[L3][CO6]	[12M]
		$+j 50$) Ω . Use the smith chart to find.		
		i) Voltage reflection coefficient.		
		ii) VSWR.		
		iii) input impedance of the line, given that the line is 0.3λ long.		
8		A lossless transmission line with $Z_0=50 \Omega$ is 30m long and operates at 3MHz.	[L3][CO6]	[12M]
		The line is terminated with a load $Z_L = 70 + j50\Omega$, If u=0.6c on the line.		
		Compute reflection coefficient, standing wave ratio and Input impedance, load		
		impedance,		
		(1) without using similar chart (11) Using smith chart		
9		A 30 m long lossless transmission line with $Z_0 = 50\Omega$ operating at 2 MHz is	[L3][CO6]	[12M]
		terminated with a load $Z_L = 60 + i 40\Omega$. If $u = 0.6$ C on the line, find the		
		reflection coefficient, the standing wave ratio S and the input impedance.		
		(i) without using smith chart (ii) Using smith chart		
10	a)	List the applications of transmission lines.	[L1][CO6]	[04M]
	b)	Discuss about transient on transmission line	[L2][CO6]	[04M]
	c)	Discuss about Microstrip transmission lines	[L2][CO6]	[04M]

Prepared by

- 1. J. Rajanikanth Associate Professor
- 2. K.D.Mohana Sundaram Associate Professor